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Why don’t models learn like humans or animals?
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How do babies learn to interact
with the world in a few months?

How do teenagers learn to drive
with only a few hours of
training?



Multimodal data - structurally different signals

Accelerometers

2 Smart lenses (intraocular pressure)

Face masks (breathing pattern, airborne

pathogens, inflammation markers) ———On-teeth sensors (drugs, for example antivirals
and antibiotics)

Smart patches (electrocardiogram) wi ‘r\“‘P“fm A sk
Smart textiles (skin temperature, P 9 N

metabolites)

=— Microneedle patches (metabolites (for Heart sensors
example glucose, lactate), inflammation
markers (for example C-reactive
protein), drugs)

5]

Electronic epidermal tattoos
(stress biomarkers, for example cortisol)

Smartwatches (activity, sleep, resting —@
heart rate, blood O, levels)

—— Wiristbands (electrolytes, metabolites,
skin temperature)

>N

Smart rings (blood pressure)
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*assuming a sleep technician charging $50/h
and 90-120 sleep stage transitions per 8 hours of sleep
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Signal annotation is not straightforward and sometimes infeasible
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Self-supervised learning uses existing data as prediction targets

Timi —

vy

Predict any part of the input from_any
other part.

Predict the future from the past.
Predict the future from the recent past.
Predict the past from the present.
Predict the top from the bottom.

Predict the occluded from the visible

Pretend there is a part of the input you
don’t know and predict that.

Image credit: Yann Lecun
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We can even create pretext tasks across different modalities

o Pretrain with self-supervision
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High-  CNN&GRU/RNN Summarize BMI F|tness Energy
dimensional Iaye’rsto learn  the features OEX Expenditure
activity input  Spatiotemporal  and forecast Age

features heart rate

Spathis et al., CHIL 2021

9 Extract representations at the window level e Summarize at the individual level

15

& ~1.700 participants

Project participants based on
embeddings & discover latent structure




Supervised Learning Unsupervised Learning

Transfer Learning
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Current approaches focus on pre-processing & unimodal data
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https://github.com/iantangc/ContrastiveLearningHAR

We have to create both
positive and negative pairs
(not straightforward to
pick)

There are no considerations
for learning both within and
across different modalities



Masked Autoencoders offer a simpler architecture based on masking
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Masking has been wildly successful in training (Chat)GPT

Q Unsupervised Pre-training

Untrained

GPT-3

Expensive training on massive datasets

Dataset: 300 billion tokens of text
Objective: Predict the next word

Example:

a robot must




Core idea: contrasting masked latent embeddings
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1. Use a separate encoder for each modality/sensor

Unlabelled Sensor-specific
Multimodal Encoders
Sensqr Data EL-M
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Deldari et al., WSDM 2024 & MLMHD @ ICML 2023



2. Merge all embeddings to a joint representation
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3. Mask the representations in the latent space
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4. Train the network to contrast the two views

Global
Aggregator
ST embeddings

L.L.LLL@JD)
z1"
SSL objective
function

Deldari et al., WSDM 2024 & MLMHD @ ICML 2023




Supervised Learning Unsupervised Learning




Results



Spatial masking + fine-tuning outperforms other methods

Technique Dataset
Training Method SleepEDF PAMAP2 WESAD
End-2-End Supervised 0.717 (.03) 0.879 (.12) 0.884 (.02)
DeepConvLSTM 0.601 (.02) 0.718 (.18) 0.791 (.04)
COCOA 0.628 (.02) 0.839 (.11) 0.669 (.01)
SSL (Fixed enc.) CroSSL (random) 0.628 (.00) 0.802 (.15) 0.642 (.02)
CroSSL (spatial) 0.722 (.02) 0.822 (.13) 0.667 (.02)
COCOA 0.678 (.01) 0.882 (.11) 0.913(.03)
SSL (Fine-tuned enc.) CroSSL (random) 0.726 (.00) 0.871 (.11) 0.894 (.02)
CroSSL (spatial) 0.741 (.00) 0.892 (.10) 0.939 (.03)

CroSSL: we test our
method in two modes

Masking

- Random
- Spatial

Transfer learning

- Fixed (frozen)
- Fine-tuned (re-training)



CroSSL is robust to missing modalities in prediction time

Technique Dataset
i Lssing data ot Masking Method SleepEDF  PAMAP2  WESAD
ine-tuning Inference
- Supervised 0.717 (.03) 0.879(.12) 0.884 (.02)
random Fixed SSL 0.628 (.00) 0.709 (.18)  0.629 (.02)
No No Fine-tuned SSL | 0.726 (.00) 0.825(.13) 0.890 (.01)
spatial Fixed SSL 0.722 (.02) 0.822 (.14) __0.715.(.06)
Fine-tuned SSL |[10:741 (.00)  0.892 (.11)  0.925 (.03)
- Supervised 0.703 (.03) 0.897 (.11) 0.894 (.02)
random Fixed SSL 0.602 (.03) 0.742(.18) 0.622 (.03)
No Yes Fine-tuned SSL | 0.738 (.03) 0.859(.13)  0.899 (.02)
spatial Fixed SSL 0.694 (.01) .0.805(16) 0.655 (.02)
Fine-tuned SSL | 0.739 (.02) [0.899 (.09)  0.923 (.03)
- Supervised 0.202 (.17)  0.469 (.36) 0.304 (.37)
random Fixed SSL 0.206 (.35) 0.331(.19) 0.186 (.16)
Yes Yes Fine-tuned SSL | 0.200 (0)  0.440(.28) 0.139 (.18)
spatial Fixed SSL 0.667 (.13) 0.646(.21) 0.278 (.14)
Fine-tuned SSL | 0.581 (.24) 0.495(.35) 0.234 (.17)

Deldari et al., WSDM 2024 & MLMHD @ ICML 2023

Spatial masking is more robust
in missing modalities on
inference time

Fixed/base models outperform
in data-scarce fine-tuning

while supervised models are
heavily impacted by missing
data



Spatial > Random, masking more effective in larger datasets
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High latent masking ratios
do not result in high
performance, unlike in
vision/MAE papers.
Performance drop is more

visible in random masking.

Fine-tuned CroSSL
outperforms the fixed
variant in most cases.



Fine-tuned models are label-efficient, fixed ones need warmup
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Fine-tuning is as good as supervised models that
have access to labeled data, but it is particularly
effective in the low-data regime (1-10% of labels)

Deldari et al., WSDM 2024 & MLMHD @ ICML 2023



Takeaways

|

Achieves state of

/ 3

Handles missing  Is data & label-efficient

art performance in data/sensors in an  with performance on par

multimodal signal
ML tasks

elegant manner  or better to supervised
models

Deldari et al., WSDM 2024 & MLMHD @ ICML 2023

4

Requires no data pre-
processing such as
negative pair mining or
hiding inputs



Problem solved?



Self-supervision needs large unlabeled data: where to find them?

PPG ECG
Number of participants 141,207 106,643
Number of segments 19,854,101 3,743,679
Average number of calendar days per participant 92.54 23.27
Total dataset time span (days) 890 1,240

Apple Heart and Movement Study

Dataset #Subjects #Samples #Classes Environment References
UK-Biobank ~100K 6B Unlabelled  Free-living Doherty et al. (2017)
Capture-24 152 573K 4 Free-living Willetts et al. (2018)
Rowlands 55 36K 13 Lab Esliger et al. (2011)
WISDM 46 28K 18 Semi free-living Weiss et al. (2019)
REALWORLD 14 12K 8 Lab Sztyler and Stuckenschmidt (2016)
Opportunity 4 39K 4 Semi free-living Roggen et al. (2010)
PAMAP2 8 2.9K 8 Lab Reiss and Stricker (2012)
ADL 7 0.6K 5 Lab Bruno et al. (2013)

UK Biobank (wristband) compared to benchmark HAR data

https://openreview.net/forum?id=pC3WJHf51j & Yuan et al., ArXiv 2023

Large unlabeled data of that
kind is hard to collect

Not publicly available on the
web, unlike images or text

Number of potential
modalities hampers
progress because it requires
aligned/paired data

Available pre-trained models
are limited in size and
generalization capabilities
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LM tokenizers are not designed for numbers

Consecutive digit chunking

Input — Token IDs

480. 481, 482 — 22148, , 4764, 16, , 4764, 17

Floats

Input — Token IDs

3.14159 — 18, 13, 1415, 19707

Case sensitive, trailing whitespaces, arbitrary integer
grouping, inconsistent long integer chunking, model-
specific behaviours, ...



A case study with activity timeseries data and the GPT tokenizer

() raw DATA

1600, A,90426708196641,7.091625,-0.5916671,8.195502;

1600, A,90426757696641,4.972757,-0.15831658,6.4°—"*=
1600, A,90426807196641,3.25372,-0.19183542,6.14
1600, A,90426856696641,2.801216,-0.15592238,5.9
1600, A,90426906196641,3.7708676,-1.0513538,7.7

[361:50, 0 117325911 2478 3623 82 075 W32.583 W82 5272 S8A2:75 0 1PN 223

G TOKENS ) #L ’{/7/1 7
Tokens Characters //ﬁff*
6,077 10769

1600, A,96426708196641,7.091625,-0.5916671,8.195502;
1600, A,90426757696641,4.972757,-0.15831658,6.6967316;
1600, A,90426807196641,3.25372,-0.19183542,6.107758;

2931, 1433, 1495, 12095, 15, 13, 3270, 1433, 46250, 11, 23, 13,

35126, 26, 198, 36150, 11, 32, 11, 24, 3023, 2075, 39251, 38205,| 1600,A,90426856696641,2.801216,-0.15592238,5.997625;
1, 19, 13, 5667, 1983, 3553, 12095, 15, 13, 1314, 5999, 1433, 3| |NEUANGENC 6006 INGAINS" NIOENNN. = 1HC5HNN 6. 1627
21, 13, 3388, 3134, 33400, 26, 198, 36150, 11, 32, 11, 24, 3023, 27675,

36928, 25272, 42759, 11, 18, 13, 1495, 367208, 12095, 15, 13, 1129, 1507,

2327, 3682, 11, 21, 13, 15982, 38569, 26, 198, 36150, 11, 32, 11, 24,

( TOKEN IDs

Spathis & Kawsar, GenAl4PC @ Ubicomp 2023




Bridging the modality gap with adapters & prompt-tuning

LLM

OUTPUT




Prompting with numbers in addition to text

Activity Recognition Atrial Fibrillation Classification
Prompt: Response:  Prompt: Response:
Classify the accelerometer data Classify the given Interbeat Interval
in meters per second squared as sequence in ms as either Atrial
either walking or running. Fibrillation or Normal Sinus.
Walking. Atrial
Fibrillation.
Running. Normal
Sinus.

Liu et al., ArXiv 2023

Stress

Prompt: Response:

Steps [Steps], resting heart rate:
[RHR] beats/min, sleep duration:
[SleepMinutes] mins, non-rem
heart rate: [NREMHR] beats/min,
mood last day [Mood] out of 5.

1 ?
What will my stress level be Stress: 5 out of 5.

80| 80 4+
7500 s00l
5000
60 400 } 60 2t
2500 L
0 40 300 40 ol—
Stress: 1out of 5.
7500 80 80 4+
500
5000 60 60 2
o0l i
2500 00
0 40 300— 40 ob—

M Steps MINREM [ Sleep M Rest. | Mood
HR Mins HR Prev. Day



From prompt engineering to few-shot learning to prompt-tuning

Question-Answer (Q-A) Pairs Zero-Shot. Prompt Eng. Prompt Tune
4 N\ ™ - N ( N\
Templates Health Data S — Q. — WVWW)
Q — < Features + A —
A AAA 0. — VW 0. — VWA
o A — (IR A~
A ————— Labels rozen)
— T' AFib. Q. — MWW |
\ ¢ ) + Train
¢ LLM Q. — m Promt LLM Q
Layer
(Frozen) A. — _t Y (Frozen) /)
o !
R — A — A ~ ——— | Pred.
o — — —
i S A ———— | Label
—

Liu et al., ArXiv 2023 LABS



Two modalities — two encoders: time-series (spirogram) + tabular data.

lung function measures
ﬁ '

volume (L)
Given age: {67.0}, sex: {male}, bmi: {28.9}, and <spirometry>, and <clinical values>, | have asthma: {




Everything-to-everything multimodal models

Interleaved Modalities
(Image + Motion Sensor) *

Text caption

LLaMAv2

biking npy

bt

Enczzgﬁxl; Zoo . Text caption (Given the motion signals)
CLAP Modality Write a social media caption for this view.
Encod 2
Intervideo ncoder
D No Grad

IMU2CLIP
Pedaling along the San Francisco Bay,

t ) l Backward taking in breathtaking views of the
Rﬁi‘ﬁg }{\}ﬁﬁo f Forward Bay Bridge! The salty sea breeze
invigorates me as I make my way
to my next destination.




Pros

Computationally efficient

LLM is fixed/frozen

Allows connecting to other high-
performing models (e.g. a sota ECG
encoder)

Breaking down the system to encoder +

adapter + LLM enables faster iteration
and testing

Spathis & Kawsar, GenAl4PC @ Ubicomp 2023

Cons

Modularization introduces
complexity, gradients don’t
propagate all the way

Adapter <-> LLM
communication is no longer
interpretable (compared to
natural language prompts)



Where are we now and what is missing?

- Adapters don’t need elaborate textual
prompts

- Multimodal integration through joint
embedding spaces

- Improved digit-level tokenizers

- Longer context windows that fit high-

dimensional data
Nov 2023 T

i Future

Treating LLMs as generic pre-trained
models seems to be working (!)

We still have to "ground" them through

- Verbose hand-engineered prompts
- Extensive aggregation/downsampling

- Careful dataset curation NO<IA

Spathis & Kawsar, GenAl4PC @ Ubicomp 2023



Read more on our papers

Latent Masking for Multimodal Self-supervised Learning in Health Timeseries

Shohreh Deldari ' 2 Dimitris Spathis> Mohammad Malekzadeh > Fahim Kawsar? Flora Salim >
Akhil Mathur *

Abstract

Limited availability of labeled data for ma-
chine learning on biomedical time-series hampers
progress in the field. Self-supervised learning
(SSL) is a promising approach to learning data
representations without labels. However, current
SSL methods require expensive computations for
negative pairs and are designed for single modali-
ties, limiting their versatility. To overcome these
limitations, we introduce CroSS1L (Cross-modal
SSL). CroSSL introduces two novel concepts:
masking intermediate embeddings from modality-
specific encoders and aggregating them into a
global embedding using a cross-modal aggrega-
tor. This enables the handling of missing modali-

applications in healthcare, including human activity recog-
nition (HAR) and sleep tracking through brain activity mon-
itoring (Kemp et al., 2000; Tang et al., 2021). However,
the reliance on labeled data for training deep neural net-
works (DNNs) has hindered their scalability (Yuan et al.,
2022). Collecting, annotating, and maintaining large labeled
datasets can be expensive, time-consuming, and impracti-
cal, leading to a growing interest in self-supervised learning
(SSL) that learns from unlabeled data (Saeed et al., 2019).

SSL defines an artificial task, known as a pretext task, where
the supervisory signal is automatically generated from un-
labelled data, enabling the training of an encoder model to
learn a latent representation of the input data (Yuan et al.,
2022). SSL has shown promise in various applications, such
as HAR (Tang et al., 2021), by leveraging large amounts of

Deldari et al, WSDM'24 & ML4AMHD @ ICML’23
arxiv.org/abs/2307.16847

The first step is the hardest: Pitfalls of Representing and
Tokenizing Temporal Data for Large Language Models

Dimitris Spathis
Nokia Bell Labs
Cambridge, UK

ABSTRACT

Large Language Models (LLMs) have demonstrated remarkable gen-
eralization across diverse tasks, leading individuals to increasingly
use them as personal assistants and universal computing engines.
Nevertheless, a notable obstacle emerges when feeding numeri-
cal/temporal data into these models, such as data sourced from
wearables or electronic health records. LLMs employ tokenizers in
their input that break down text into smaller units. However, tok-
enizers are not designed to represent numerical values and might
struggle to understand repetitive patterns and context, treating con-
secutive values as separate tokens and disregarding their temporal
relationships. Here, we discuss recent works that employ LLMs for
human-centric tasks such as in mobile health sensing and present
a case study showing that popular LLMs tokenize temporal data
incorrectly. To address that, we highlight potential solutions such
as prompt tuning with lightweight embedding layers as well as mul-
timodal adapters, that can help bridge this "modality gap". While
the capability of language models to generalize to other modalities
with minimal or no finetuning is exciting, this paper underscores

Spathis & Kawsar,

Fahim Kawsar
Nokia Bell Labs
Cambridge, UK

the unintentional fragmentation of continuous sequences into dis-
jointed tokens. Consequently, the temporal relationships that un-
derpin such data may be lost in translation, potentially undermining
the very essence of the information being processed.

In this context, this paper delves into the nuances and obstacles
that emerge when LLMs are confronted with the task of repre-
senting and tokenizing temporal data. We focus on the interplay
between numerical and textual information, uncovering the po-
tential pitfalls that can hamper the effective utilization of LLMs in
scenarios where temporal context is important. Last, we discuss
potential solutions from the rapidly growing area of parameter-
efficient transfer learning and multimodal adapters that could en-
able better integration of non-textual data into LLMs.

2 TOKENIZATION IN LANGUAGE MODELS

Tokenization is a fundamental process underpinning the operation
of LLMs. It involves the division of input and output texts into
smaller, manageable units known as tokens. These tokens serve

GenAl UbiComp’23

arxiv.org/abs/2309.06236
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