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Abstract
This study examines the clinical decision support systems in healthcare, in particular about the prevention, 
diagnosis and treatment of respiratory diseases, such as Asthma and chronic obstructive pulmonary disease. 
The empirical pulmonology study of a representative sample (n = 132) attempts to identify the major 
factors that contribute to the diagnosis of these diseases. Machine learning results show that in chronic 
obstructive pulmonary disease’s case, Random Forest classifier outperforms other techniques with 97.7 per 
cent precision, while the most prominent attributes for diagnosis are smoking, forced expiratory volume 1, 
age and forced vital capacity. In asthma’s case, the best precision, 80.3 per cent, is achieved again with the 
Random Forest classifier, while the most prominent attribute is MEF2575.

Keywords
asthma, clinical decision making, chronic obstructive pulmonary disease, machine learning, respiratory 
diseases

Introduction

With the increasing accumulation of big data, there are new opportunities and challenges related to 
the understanding, analysis and knowledge extraction. Simple statistical analysis of past decades is 
probably not enough in the era that everything is measurable. In this environment, the healthcare 
sector can benefit from identifying common patterns in different patients. But why did we choose 
to deal with asthma and chronic obstructive pulmonary disease (COPD)?
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Asthma is a chronic disease of the airways. The airways – or else bronchi – are tubes which 
carry air to the lungs. When an asthmatic inhales a stimulus from the environment, bronchospasm 
and restriction of air through them are induced. Patients with asthma have a hereditary predisposi-
tion, but symptoms appear after exposure to stimuli such as viral infections, and allergens (dust, 
pollen, animal dander, etc.). COPD refers to diseases associated with chronic bronchitis and 
emphysema, which have in common the respiratory airways obstruction, leading to daily dysp-
noea. The main factor of the progressive airway obstruction is smoking. Every year, about 300 mil-
lion patients are diagnosed with asthma, which causes a total of 250,000 deaths.1 COPD occurs in 
330 million patients worldwide, causing about 3 million deaths.2 Consequently, the need to develop 
tools for early prediction and diagnosis of respiratory diseases arises.

This study examines the factors that characterise the diagnosis of asthma and COPD, with 
machine learning techniques. Machine learning is an artificial intelligence technique which allows 
us to learn from available data and make predictions for unseen conditions. The measurement data 
employed in the training of the algorithms were collected from chest-doctor visits. The long-term 
aim of this work is to be embedded in clinical decision support systems (CDSSs) for real-time 
management of asthma and COPD patients. Our work is in accord with published research in this 
field. In particular, Prosperi et al.3 compared linear and non-linear models in predicting asthma and 
eczema. Our methodology follows the same route, substituting eczema with COPD. They suggest 
that ‘more usefully-complex modelling is the key to a better understanding of disease mechanisms 
and personalised healthcare’. This is an interesting comment because we should test our systems 
not only in terms of performance but also in terms of complexity and interpretability. Our experi-
ments take the above comment into consideration, testing non-linear and linear algorithms, provid-
ing interpretability with feature ranking. Also, we find many overlaps between the significant 
factors of diagnosing asthma and COPD as well, suggesting that we may model them together.

The remainder of this article is organised as follows. Section ‘Related work’ discusses the previ-
ous literature related to the problem of extracting the most important features from respiratory 
diseases, along with our research questions. The methodology followed is presented in section 
‘Methodology’ dealing with data sources and tools used. Section ‘Results’ describes the statistical 
and machine learning results, along with a study of variable significance. Section ‘Discussion and 
conclusion’ provides some final conclusions, limitations and directions for future work.

Related work

The literature of this study is multifaceted, with applications in the fields of decision making, 
healthcare, and artificial intelligence. We chose to present some illustrative papers that resemble 
our methodology or present findings that helped us make some choices on our methodology. All 
papers are related to the leverage of computational methods regarding the diagnosis of respiratory 
diseases. We indicate the different variables that are used compared to this study. The thematic 
areas on which the literature review is divided are three: CDSSs assessment, machine learning and 
clinical trials. Clearly, there are many overlaps between the categories, but this separation is made 
for a better presentation of the work.

CDSSs assessment

A CDSS is any computer program designed to help healthcare professionals to make clinical deci-
sions.4 Below, we present some relevant CDSSs related to the diagnosis of asthma and COPD.

An expert system based on rules was proposed by Khalid et al.5 and was created to cope with 
the uncertainty of suspected asthma. Their sample was 50 patients and the rules used were 96. Five 
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of their variables are used in this work too. The purpose of the study was to evaluate a CDSS 
against the judgment of the physician. The findings show that the area under the curve (AUC) for 
the system is at 0.9, while the doctor’s is at 0.8. AUC area is a statistical measure that equals to a 
classifier’s probability to classify a random positive value higher than a corresponding negative.

Children hospital visits constituted the dataset that was examined in Hoeksema et  al.,6 who 
based their system on these data. The rules came from the national US standards. The sample com-
prises 1199 visits. The statistical methods chosen were the paired t-test and chi-square test. The 
different variables than ours were the ‘reduction of the activities’ of patients, hospitalisation due to 
asthma and the side effects of such medication. Research using the system showed that doctors 
agreed with the system 3/4 for mild cases, 1/3 for bold actions and 1/3 for those requiring action 
steps. The system responded with relative accuracy for assessment but not for therapy suggestion.

Another system based on national guidelines was that of Bi and Abraham,7 which was web 
based. The researchers, in this case, concluded that these systems, although they respond relatively 
well, have not been adopted widely because the implementation of directives and rules requires 
continuous changes.

Moving on to a meta-analysis, Matui et  al.8 researched the adoption of systems in the last 
20 years. After analysing 5787 investigations, they examined eight different experiments. The 
backbone of their findings was that the systems were inefficient, with low usage. When used, their 
advice was not followed. But when used properly, the systems improved prescribing rates and 
long-term clinical outcomes.

The difference between system adoption in urban and suburban areas was the subject of Bell 
et al.,9 in which they reviewed the adoption of a system in 12 medical centres for 1 year. The sample 
was 19.450 children between 0 and 18 years. The survey involved socioeconomic features includ-
ing items such as origin (race) and type of insurance. Upon the system adoption, the findings 
showed an increase in the number of prescriptions for mild cases (6%) and spirometry rates (3%) 
in urban areas. At suburban areas, 14 and 6 per cent, respectively.

A similar meta-analysis of Fathima et al.10 involved experiments published in the last decade 
about CDSS assessment. The researchers concluded that the use of the systems improved the treat-
ment of asthma and COPD in 3/4 of the cases, whereas almost half had a statistically significant 
improvement (p < 0.05) of the clinical results.

In the early years of the industry, Kuilboer et al.11 created the ‘Asthmacritic’, a system that 
does not aim in deciding whether someone has the disease, but the next step, that of medicine and 
special treatment suggestion. After training, the system identified only 8.5 per cent of patients. 
During the research, the system made 255.664 recommendations to patients (approximately 3.4 
per patient visit).

Machine learning

Many studies in literature, along with ours, focus on training systems with respiratory data in order 
to extract the most prominent features for diagnosis and prediction.

Machine learning algorithms for the diagnosis of asthma in expert systems were investigated by 
Prasad et  al.12 The algorithms compared were as follows: auto-associative memory neural net-
works (AMNN), Bayesian networks (BN), ID3 and C4.5, and the sample included 100 patients. 
The different variables than ours were the control before and after exercise and swelling in the legs. 
Findings show that Neural Networks outperform the other methods.

Asthma prediction in later life was the subject of the study by Pescatore et al.13 They examined 
children who developed asthma 5 years after the visit to the doctor for wheezing or coughing, com-
pared to the automatic prediction. The different variables from ours were the presence of eczema 
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and the family history of asthma or bronchitis. The prediction method was the Logistic Regression 
on a sample of 1226 children. The 345 (28%) of them developed asthma 5 years after. The AUC 
score of the tool was 0.74.

A comparison between classifiers (artificial neural network (ANN), support vector machine 
(SVM), and Gaussian process) and expert-based BN (vs an automatically constructed one) was 
attempted by Dexheimer et al.14 Every classifier performed slightly worse than the expert-based 
model; BN achieved the highest accuracy.

Much alike our own methodology, Badnjevic et  al.15 present a system for classification of 
asthma and COPD based on fuzzy rules and Neural Networks. The system was trained on 455 
patients and achieved accuracy over 99 per cent in all cases. Their feature extraction was based on 
Global Initiative for Asthma (GINA) and Global Initiative for chronic Obstructive Lung Disease 
(GOLD) guidelines, which provided the fuzzy rules for the Neural Networks. This kind of pre-
processing might have contributed to the almost perfect accuracy. In comparison to our study, 
they focused only on Neural Networks while we offer a thorough algorithmic machine learning 
comparison accompanied by feature significance ranking, without being based on data pre-pro-
cessing. Also, while they analyse oscillometry data unlike us, our data contain demographic pro-
file, medical and special lung measurements, habits and associated symptoms, attempting to look 
beyond only respiratory metrics. In comparison with oscillometry, standard spirometry continues 
to be the mainstay in the clinical assessment of lung function in children and adults.16 Oscillometry 
instruments are non-portable and more expensive compared to spirometers, only available in 
some major hospitals. Besides, our study focuses on variables that are easy to obtain towards the 
potential self-assessment of asthma and COPD; spirometers and oximeters are portable, cost 
below US$600 and they are getting gradually integrated in wearables, smartphones and smart-
watches. Mohktar et al.17 attempt to predict the risk of exacerbation in patients with COPD using 
home tele-health measurement data. The proposed algorithm, which uses a classification and 
regression tree (CART), has been validated with patients living at home. The algorithm can clas-
sify data into either a ‘low-risk’ or ‘high-risk’ category with 71.8 per cent accuracy and was able 
to detect a ‘high-risk’ condition 1 day prior to patients actually being observed as having a wors-
ening in their COPD condition.

Similar to our setting, Himes18 identified clinical factors that modulate the risk of progression 
to COPD among asthma patients using data extracted from electronic medical records. A BN model 
composed of age, sex, race, smoking history, and eight co-morbidity variables is able to predict 
COPD in the independent set of patients with an accuracy of 83.3 per cent.

An unsupervised approach on this field was attempted by Fitzpatrick et al.19 Their experiment 
included the grouping (clustering) of 12 variables from 161 children in 5 hospitals for the Severe 
Asthma Research Program (SARP). The clustering method was the agglomerative hierarchical 
clustering, a bottom-up approach where each observation starts in its own cluster and gradually 
pairs of clusters are merged as we climb the hierarchy. The results of clustering showed four dif-
ferent clusters: (1) relatively good lung function and low atopy; (2) relatively low lung function, 
more atopy, increased symptoms and medication use; (3) greater co-incidence of diseases, increased 
bronchial reaction and lower lung function and (4) lower lung function, more symptoms and medi-
cation use. Significant clustering variables were the duration of asthma, the number of drugs and 
the threshold of pulmonary function. Prosperi et  al.3 compared linear and non-linear machine 
learning methods such as Logistic Regression and Random Forests for predicting asthma and 
eczema in 554 adults. The findings show that the non-linear models show better sensitivity and 
specificity than other methods, more for asthma and wheezing and less for eczema. It is confirmed 
that the sensitivity to allergens and lung function characterises asthma better combined than sepa-
rately. The Random Forest algorithm outperformed the others, verifying our own results as well in 
both cases.
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Clinical trials

This section contains studies about experiments on respiratory diseases that did not employ a 
CDSS or machine learning, but most of the times researched more on the diseases per se with sta-
tistical inference.

Another study that deals with later life prediction of asthma is by Toelle et al.,20 in which they 
tried to identify the factors that determine asthma in the later adult life of children. Out of 718 
children aged 8–10 years, 565 (80%) were examined 15–17 years later. The statistical method used 
was the multivariate likelihood ratios (LRs). This measure involves the concepts of sensitivity and 
specificity. They recorded as separate variables the family history in respiratory disease from the 
mother and the father. Children’s features that predict asthma symptoms in adulthood are low 
spirometry, hypersensitivity of the airways, recent whistle and the female sex (perhaps due to sam-
pling). Children developing the above-mentioned five characteristics have an overall likelihood 
ratio of 36.9 for adult asthma existence.

At a little different viewpoint regarding the relation between the two under-review diseases, 
Soriano et al.21 studied the co-morbidity of asthma and COPD with other diseases, comparing the 
risk in the general population. The data were obtained from the UK General Practice Research 
Database. The sample was divided in patients with COPD (n = 2.699) and asthma (n = 7.931), 
which were diagnosed in 1998. The study showed that COPD co-occurs through the patients’ life-
time along with angina, cataracts, bone fracture, osteoporosis, pneumonia and respiratory infec-
tions. However, asthma showed lower co-occurrence of diseases perhaps because of the younger 
age distribution sample, apart from respiratory infections and fractures.

Research questions

By studying the literature in these fields, we observe that the researchers have not reached a con-
sensus for a generalised model of diagnosis and prediction of respiratory diseases. Researchers in 
the field of respiratory disease diagnosis have not decided on some common benchmarks in order 
to measure our techniques against them. From computational side, we cannot decide on the best 
algorithm for diagnosis because the available variables vary depending on the problem. Upon the 
above observations, this study attempts to answer the following research questions, by providing a 
comparison of some machine learning algorithms. The research questions we are attempting to 
answer are the following:

RQ1: What are the most important factors to diagnose asthma with machine learning methods, 
based on our sample?

RQ2: What are the most important factors to diagnose COPD with machine learning methods, 
based on our sample?

RQ3: Which machine learning algorithm achieves the highest precision in order to diagnose 
asthma and COPD?

Methodology

We are now able to structure the methodology of this empirical study. In order to examine the most 
dominant features of diagnosis and prediction of the two respiratory diseases, we analysed a data-
set provided by a pulmonologist doctor. The sample contains 132 entries corresponding to unique 
patients who visited the clinic in a suburb of Thessaloniki, Greece, during the biennium 2014–
2015. Each patient record describes 22 different values about the demographic profile, medical and 
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special lung measurements, habits and associated symptoms and, finally, the dependent variables: 
if one suffers from asthma or COPD.

The pulmonary measurements come from the spirometer, a device which estimates the volume 
of the air inhaled and exhaled by time. General medical measurements, such as oximetry and pulse, 
come from the oximeter. The remaining symptoms are typical questions asked by the physician to 
the patient. Also, we removed the variables Patient Name and Inhaler from our further analysis as 
being non-informative. Inhaler was used in Badnjevic et al.15 as a bronchodilatation medication to 
measure the lung reaction before and after the examination. In our dataset, it just indicates that the 
patient has already taken that medication, so it has no predictive value of diagnosis. We should note 
that we perform two different experiments for each disease (asthma, COPD). Table 1 provides a 
detailed view of each variable.

After the necessary cleaning and anonymisation of data, the sample was tested with the SPSS 
software. We present the descriptive statistics of each variable, correlations between the dependent 
and independent variables and a first prediction approach using Logistic Regression.

Besides the statistical analysis, the Python library ‘Sklearn’22 was used in order to apply machine 
learning algorithms for classification. Under the methodology of cross validation and hyper-
parameter optimisation, we tested multiple algorithms from different technical fields. We decided 
to choose a representative portion thereof used in the literature, attempting to cover a wide spec-
trum of classifiers’ categories such as linear, non-linear, kernel-based, trees and probabilistic ones. 
Decision Trees were used by Mohktar et al.,17 Prasad et al.12 and Prosperi et al.3 Neural Networks 
were employed by Prasad et al.,12 Dexheimer et al.14 and Badnjevic et al.15 Logistic Regression was 
compared by Prosperi et al.3 and Pescatore et al.13 Kernel-based methods such as SVMs were com-
pared by Dexheimer et al.14 Also, Random Forest was examined by Prosperi et al.3 Finally, the final 
list of algorithms with which we deal is the following: Naive Bayes, Logistic Regression, Neural 
Networks, SVMs, K-Nearest Neighbour, Decision Trees and Random Forest.

Results

Following the above methodology, this section analyses the results of the dataset run through sta-
tistical and algorithmic models. The sample contains 132 entries corresponding to unique patients 
and 22 variables.

Statistical analysis

Tables 2 and 3 present the statistics of quantitative and qualitative variables. Along with the assis-
tance of the doctor, we observe that the quantitative statistics seem normal; the spectrum of spirom-
etry forced vital capacity (FVC) values ranges from 32 per cent, which indicates very poor airway 
performance, to 117 per cent, a totally healthy performance. The rest of the values follow the same 
pattern. At qualitative statistics, we observe that our sample contains more women than men (65% 
women) and the majority of patients are healthy; 45 per cent of them have asthma, while just 27 per 
cent have COPD.

The crosstab visualisation gives us a clear outline of the distribution of the dependent variable 
upon each independent variable of the dataset. In Figure 1, we observe that patients who have 
asthma display more frequently symptoms of chest pain, wheeze, use inhalers, perform lower at 
spirometry, suffer from breath shortness and cough, are females and belong to young age groups.

However, in Figure 2, patients who suffer from COPD are more likely to smoke, perform 
badly at spirometry, suffer more frequently from a cough and belong to older age groups. The 
observations of Figures 1 and 2 are considered normal by our doctor, which qualitatively validates 
our dataset.



Spathis and Vlamos	 7

Machine learning analysis

After statistical analysis, the sample is examined with machine learning algorithms. We selected 
the 20 independent variables and trained them against the two dependent variables (asthma and 
COPD) in two different experiments.

Table 1.  Variables used in our study.

No. Attributes Value Comments

1 Age group Numerical Age groups are:
0–10 years old: 1
11–20 years old: 2
21–30 years old: 3
31–40 years old: 4
41–50 years old: 5
51–60 years old: 6
61–70 years old: 7
71–80 years old: 8
81–90 years old: 9

2 Sex M/F  
3 Oxygen saturation Numerical The fraction of oxygen-saturated haemoglobin relative to 

total haemoglobin in the blood. Normal blood oxygen levels 
in humans are considered 95%–100%

4 Pulse Numerical  
5 Cough Yes, no  
6 Breath shortness Yes, no  
7 FEV1 Numerical Forced expiratory volume. FEV1 is the volume of air that 

can forcibly be blown out in 1 second, after full inspiration
8 FVC Numerical Forced vital capacity (FVC) is the volume of air that can 

forcibly be blown out after full inspiration
9 TIFF Numerical Tiffeneau–Pinelli index = FEV1/FVC
10 PEF Numerical Peak expiratory flow (PEF) is the maximal flow (or speed) 

achieved during the maximally forced expiration initiated at 
full inspiration

11 MEF25 Numerical Maximal expiratory flow at 25% of the FVC curve
12 MEF50 Numerical  
13 MEF75 Numerical  
14 MEF2575 Numerical  
15 Inhaler Yes, no  
16 Smoker Yes, no  
17 Wheeze Yes, no  
18 Spit Yes, no  
19 Chest pain Yes, no  
20 Patient name Char  
21 Asthma Yes, no Dependent variable
22 COPD Yes, no Dependent variable

Patient names’ initials only, due to privacy reasons (N = 132).
FEV1: forced expiratory volume; FVC: forced vital capacity; TIFF (Tiffeneau–Pinelli index) = FEV1/FVC; PEF: peak expira-
tory flow; MEF: maximal expiratory flow at 25/50/75 per cent of the FVC curve; COPD: chronic obstructive pulmonary 
disease.



8	 Health Informatics Journal 00(0)

Table 2.  Descriptive statistics of the quantitative variables.

Mean Standard 
error

Min Max Range Standard 
deviation

Variance

Oxygen saturation 96.93 0.122 93 99 6 1399 1957
Pulse 82.96 1.109 50 125 75 12,740 162,296
FEV1 84.51 1.561 32 123 91 17,934 321,611
FVC 77.68 1.507 32 117 85 17,317 299,867
TIFF 113.62 0.925 70 140 70 10,628 112,955
PEF 80.26 1.711 28 128 100 19,661 386,559
MEF25 80.55 1.979 30 139 109 22,736 516,906
MEF50 84.79 2.607 23 168 145 29,949 896,947
MEF75 104.24 3.425 25 256 231 39,352 1548,597
MEF2575 92.80 2.673 27 188 161 30,710 943,106

FEV1: forced expiratory volume; FVC: forced vital capacity; TIFF (Tiffeneau–Pinelli index) = FEV1/FVC; PEF: peak expira-
tory flow; MEF: maximal expiratory flow at 25/50/75 per cent of the FVC curve.

Table 3.  Descriptive statistics of the qualitative variables.

Value Frequency Percentage

Age group (years) 1 5 3.8
2 20 15.2
3 20 15.2
4 11 8.3
5 26 19.7
6 29 22.0
7 13 9.8
8 4 3.0
9 4 3.0

Sex F 86 65.2
M 46 34.8

Cough 0 36 27.3
1 96 72.7

Breath shortness 0 68 51.5
1 64 48.5

Inhaler 0 105 79.5
1 27 20.5

Smoker 0 91 68.9
1 41 31.1

Wheeze 0 103 78
1 29 22

Spit 0 75 55.3
1 59 44.7

Chest pain 0 109 82.6
1 23 17.4

Asthma 0 72 54.5
1 60 45.5

COPD 0 96 72.7
1 36 27.3

COPD: chronic obstructive pulmonary disease.
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In order for each algorithm to be able to process the data, we pre-processed the categorical vari-
ables of sex (male–female), transforming them to numerical with a technique called One Hot 
Encoding.

We evaluate our algorithms with precision and f-measure scores. Precision (P) is the ratio of 
True Positives (TP) to True Positives (TP) + False Positives (FP). F-measure (or F1 score) uses 
Precision (P) and Recall (R), with recall being the ratio of True Positives (TP) to True Positives 
(TP) + False Negatives (FN), so that F-measure is the harmonic mean thereof. Precision is one of 
the most common metrics in machine learning literature and is preferred to accuracy because when 
there is a large class imbalance, it may be desirable to select a model with a lower accuracy due to 
its greater predictive power on the problem

Precision
TruePositive

TruePositive+FalsePositive

Recall
Tru

=

=
eePositive

TruePositive+False Negative

F-Measure
Precision

= 2×
×RRecall

Precision+Recall

Machine learning algorithms contain some hyper-parameters that should be fine-tuned. We 
performed a methodology called Grid Search, searching in the space of all possible parameters of 
the supported algorithms. The only algorithm that does not need this methodology is Naive 
Bayes,23 being non-parametric. During Grid Search, we evaluate each model with the reported 
precision on 5- and 10-fold cross validation. These values are reported on the column Training in 
Tables 4 and 5.

After training, we keep the models with the highest precision as well as their hyper-parameter 
values. In order to test them in an unexpected real-world scenario, we split the dataset into 20–
80 per cent, with 20 per cent being the test set and 80 per cent the train set. Please note that we do 

Table 4.  Comparison of machine learning algorithms for asthma diagnosis.

Asthma

Classifiers Training 20% test validation Training 20% test validation

10-fold CV 
precision

Precision F1 5-fold CV 
precision

Precision F1

Naive Bayes 73.4 82 81 70.4 82 81
Logistic regression 71.2 67 67 72.7 67 67
Neural Network 66.6 37 36 66.6 72 64
SVM 71.2 70 70 70.4 70 70
K-Nearest Neighbour 68.9 64 62 67.4 60 57
Decision Tree 71.2 67 66 68.9 63 63
Random Forest 80.3 83 81 79.5 83 81

SVM: support vector machine; CV: cross validation.
This table presents the precision of the cross-validated hyper-parameter optimisation, performed with 5 and 10 folds. 
After the grid search, we obtained the optimal hyper-parameters, split the data into 20 per cent test and 80 per cent 
train and predicted on the test. We report precision and F1 score.
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not use the already trained models for prediction; we only take their optimal parameters. We train 
the algorithms passing them the best hyper parameters and test them with the 20 per cent unseen 
data. These values (precision and F1 score) are reported on the column ‘Test Validation’ in Tables 
4 and 5.

The obvious point drawn by Tables 4 and 5 is that the predictive power of COPD is stronger 
than in asthma, with precision difference around 15 per cent between the two. Nevertheless, the 
results are quite high and allow us to use the models in forecasting.

In asthma’s case, we observe the highest precision (80.3%) by the Random Forest classifier and 
10-fold cross validation. The validation test-set achieves 83 per cent precision. Random Forests,24 
as a combined solution (ensemble), solve the problem of over-fitting in conventional Decision 
Trees and seem to be the perfect solution for interpretability and predictive power. Their models 
are easily interpreted even by non-experts and their results are very accurate. Our optimal hyper-
parameters after the Grid Search were the following: minimum number of samples required to be 
at a leaf node: 1; quality of a split criterion: entropy; number of trees in the forest: 100; features to 
consider when looking for the best split: √features; maximum depth of the tree: 100; and minimum 
number of samples required to split an internal node: 2.

Apart from Random Forest, Naive Bayes comes second with 73.4 per cent in 10-fold cross vali-
dation, while Logistic Regression is third with 72.7 per cent in 5-fold cross validation.

In COPD’s case, the highest precision is achieved again by Random Forests (97.7%) and 10-fold 
cross validation, with the optimal hyper-parameters being minimum number of samples required 
to be at a leaf node: 1, quality of a split criterion: entropy, number of trees in the forest: 50, features 
to consider when looking for the best split: log 2, maximum depth of the tree: 5 and minimum 
number of samples required to split an internal node: 2. Apart from Random Forests, again Naive 
Bayes (96.9%) and Logistic Regression (96.2%) produce high precisions, both with 10-fold cross 
validation.

Comparing the two cross-validation techniques (with 5 and 10 folds), in both cases, 10 fold 
performs better with the exception of Logistic for asthma and Neural Network for COPD, when 5 
fold performed better.

Table 5.  Comparison of machine learning algorithms for COPD diagnosis.

COPD

Classifiers Training 20% test validation Training 20% test validation

10-fold CV 
precision

Precision F1 5-fold CV 
precision

Precision F1

Naive Bayes 96.9 97 96 96.9 97 96
Logistic regression 96.2 97 96 95.4 97 96
Neural Network 81.8 88 83 82.5 89 89
SVM 93.9 97 96 92.4 97 96
K-Nearest Neighbour 76.5 50 58 75.7 63 64
Decision Tree 96.2 97 96 94.6 100 100
Random Forest 97.7 100 100 96.9 100 100

COPD: chronic obstructive pulmonary disease; SVM: support vector machine; CV: cross validation.
This table presents the precision of the cross-validated hyper-parameter optimisation, performed with 5 and 10 folds. 
After the grid search, we obtained the optimal hyper-parameters, split the data into 20 per cent test and 80 per cent 
train and predicted on the test. We report precision and F1 score.
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Since Random Forests outperform other machine learning techniques in both cases, we obtain 
their feature significances in order to be able to understand which features are important to them. 
In Figures 3 and 4, we graph each feature importance (red bar) along with its inter-tree variability 
(blue deviation line). We see that for both asthma and COPD, the feature ranking is similar with the 
results we obtain in Feature Ranking, which we discuss in the next section.

Figure 3.  Feature importance for COPD, extracted from the Random Forest with the best accuracy. The 
red bars are the feature importance of the forest, along with their inter-trees variability.

Figure 4.  Feature importance for Asthma, extracted from the Random Forest with the best accuracy. 
The red bars are the feature importance of the forest, along with their inter-trees variability.
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Feature ranking

The selection of attributes that determine the classification into one class or another is one of 
the most important decisions in a machine learning experiment. In our experiment, we are inter-
ested in identifying which feature influences the final classification more. Using two attribute 
selection methods, Correlations and Information Gain, we conclude in the ranking shown in 
Table 5. We restrict the ranking up to 10 features, in order to focus and identify the most impor-
tant ones.

The correlation method (Pearson’s) is among the most prevalent in the field of statistics on find-
ing relationships between variables. InfoGain method calculates the entropy change from one state 
to another, receiving information according to the following formula

InfoGain Class,Attribute = H Class H (Class|Attribute)( ) ( ) −

In Decision Trees, comparing the entropy before and after the split, we obtain a measure of 
information gain or how much information we gained by doing the split using that particular 
feature.

Significant COPD variables.  In Table 6, we observe that the two methods agree to the variables: 
Smoker, FEV1, Age, FVC, Cough, MEF50 and MEF25. However, the position of their classifica-
tion varies. We note that these seven variables encountered in both methods are related mostly to 
pulmonary spirometer measurements, demographics and symptoms. Of course, the most prevalent 
feature is smoking. We know from literature that COPD occurs in middle-aged and elders, espe-
cially in smokers. This is clearly reflected in the choice of variables. Older age and smoking history 
are confirmed by Himes et al.,18 with age being the best predictor if we do not know about the 
smoking habits. Also, Hamad et al.25 found in their tele-health system that cough created signifi-
cantly more alerts by those treated in the community, whereas a drop in oxygen saturation created 
significantly more alerts pre-hospitalisation.

Table 6.  Feature ranking for COPD and asthma.

Rank COPD Asthma

InfoGain Correlation InfoGain Correlation

1 Smoker Smoker*** MEF2575 Smoker*
2 FEV1 FEV1* Age MEF2575*
3 Age FVC* Smoker MEF50*
4 FVC MEF50* Breath shortness Age*
5 Cough Age* Wheeze Wheeze*
6 Breath shortness MEF25* Cough MEF25*
7 MEF50 MEF2575* Chest pain Breath shortness
8 Wheeze PEF* Sex TIFF
9 MEF25 MEF75* Spit MEF75
10 Sex Cough* MEF50 PEF

FEV1: forced expiratory volume; FVC: forced vital capacity; TIFF (Tiffeneau–Pinelli index) = FEV1/FVC; PEF: peak expira-
tory flow; MEF: maximal expiratory flow at 25/50/75 per cent of the FVC curve.
Ranking of variables with information gain and Pearson correlation.
Correlation: (*) > 0.25, (**) > 0.50 and (***) > 0.75.
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Significant asthma variables.  In asthma’s case, the unanimity we observed in the case of COPD is 
absent. Asthma affects a larger population demographic, making it difficult to analyse and identify 
the most important factors. The common characteristics of the two compared methods are Inhaler, 
MEF2575, Age, Smoker, Wheeze and Breath Shortness. MEF2575 describes the maximal value of 
expiration rate in the middle of the FVC curve and the low metrics as predictors are confirmed by 
Fitzpatrick et al.19 and Prosperi et al.3 Additionally, this single pulmonary measurement occurs on 
both methods, unlike COPD. This, according to the physician, is interpreted as that the asthma is 
reversible during the life of the patient. There are periods of life that one can achieve 100 per cent 
spirometry measurements. Low values are mainly observed in periods of asthma attacks, which are 
relatively short. The symptoms, however, such as breath shortness and wheezing, appear regularly.

Discussion and conclusion

Our study examines the CDSSs in healthcare, in particular about the prevention, diagnosis and 
treatment of respiratory diseases, such as Asthma and COPD. The empirical study of a representa-
tive sample (132 patients and 22 attributes) identified the major factors that contribute to the diag-
nosis of the above diseases. Our machine learning results show that in COPD’s case, Random 
Forests outperform other techniques with 97.7 per cent precision, while the most prominent attrib-
utes for diagnosis are smoking, FEV1, age and FVC. In asthma’s case, the best precision, 80.3 per 
cent, is achieved with the Random Forest classifier, while the most prominent attributes are 
MEF2575, smoking, age and wheeze. Regarding the machine learning methods, asthma is detected 
more accurately with Random Forest, a fact that is confirmed by Prosperi et al.3 too.

Other studies did not distinguish so much between different spirometer metrics or included one 
or two, while we include eight. We observe that despite being measured by the same device, there 
are big differences in their predictive power. For instance, FEV1, the volume of air that can forci-
bly be blown out in 1 s, is the most important spirometer factor for both cases, while Tiffeneau–
Pinelli index (TIFF) significance – being the ratio of FEV1/FVC – is almost negligible. These 
observations would be valuable to pulmonologists.

The findings of our study, namely, the most important factors of asthma and COPD modelling 
for a prediction model, may assist doctors in their final assessment and monitoring of the patient. 
Apart from physicians, it should help IT and software engineers who develop expert decision sup-
port systems to evaluate different algorithms that provide the best classification of the above 
diseases.

As per the limitations of this study, we acknowledge that the size of the sample is not considered 
big for us to be able to generalise our predictions. However, the variety of the attributes/features 
allows us to describe each patient of our dataset thoroughly.

In fact, the novelty of our study lies on the leverage of many factors as attributes; from demo-
graphic data to spirometry rates, general medicine metrics and common symptoms. From our dis-
cussions with clinicians and doctors, we understand that the challenge on the adoption of expert 
systems on this field is a matter of user experience and standards. Especially on the latter, Bi and 
Abraham7 reached the same conclusion that continuous changes in national guidelines and tech-
nologies do not help the further integration. Another challenge to be researched is the implementa-
tion of predictive models that do not require invasive medicine or expensive devices; spirometry in 
our case. Would it be possible to predict respiratory diseases just from habits, demographic, socio-
economic or air-pollution data? Mobile apps and quantified-self devices should surely contribute 
to that. That is the next question for big data analysis in order to democratise healthcare through 
technology.
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