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ABSTRACT

Audio signals generated by the human body (e.g., sighs, breathing,

heart, digestion, vibration sounds) have routinely been used by

clinicians as indicators to diagnose disease or assess disease pro-

gression. Until recently, such signals were usually collected through

manual auscultation at scheduled visits. Research has now started

to use digital technology to gather bodily sounds (e.g., from dig-

ital stethoscopes) for cardiovascular or respiratory examination,

which could then be used for automatic analysis. Some initial work

shows promise in detecting diagnostic signals of COVID-19 from

voice and coughs. In this paper we describe our data analysis over a

large-scale crowdsourced dataset of respiratory sounds collected to

aid diagnosis of COVID-19. We use coughs and breathing to under-

stand how discernible COVID-19 sounds are from those in asthma

or healthy controls. Our results show that even a simple binary

machine learning classifier is able to classify correctly healthy and

COVID-19 sounds. We also show how we distinguish a user who

tested positive for COVID-19 and has a cough from a healthy user

with a cough, and users who tested positive for COVID-19 and have

a cough from users with asthma and a cough. Our models achieve

an AUC of above 80% across all tasks. These results are preliminary

and only scratch the surface of the potential of this type of data and

audio-based machine learning. This work opens the door to further

investigation of how automatically analysed respiratory patterns

could be used as pre-screening signals to aid COVID-19 diagnosis.

CCS CONCEPTS

• Information systems → Data mining; • Human-centered

computing → User studies; Ubiquitous and mobile comput-

ing; • Computing methodologies→Machine learning.
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1 INTRODUCTION

Audio signals generated by the human body (e.g., sighs, breath-

ing, heart, digestion, vibration sounds) have often been used by

clinicians and clinical researchers in diagnosis and monitoring of

disease. However, until recently, such signals were usually collected

through manual auscultation at scheduled visits. Research has now

started to use digital technology to gather bodily sounds (e.g., digi-

tal stethoscopes) and run automatic analysis on the data [24], for

example for wheeze detection in asthma [18, 23]. Researchers have

also been piloting the use of human voice to assist early diagnosis

of a variety of illnesses: Parkinson’s disease correlates with soft-

ness of speech (resulting from lack of coordination of the vocal

muscles) [6, 12], voice frequency with coronary artery disease (hard-

ening of the arteries which may affect voice production) [19], and

vocal tone, pitch, rhythm, rate, and volume correlate with invisible

illnesses such as post-traumatic stress disorder [5], traumatic brain

injury and psychiatric conditions [13]. The use of human-generated

audio as a biomarker for various illnesses offers enormous potential

for early diagnosis, as well as for affordable solutions which could

be rolled out to the masses if embedded in commodity devices.

This is even more true if such solutions could monitor individuals

throughout their daily lives in an unobtrusive way.

Recent work has started exploring how respiratory sounds (e.g.,

coughs, breathing and voice) collected by devices from patients

tested positive for COVID-19 in hospital differ from sounds from

healthy people. In [16] digital stethoscope data from lung auscul-

tation is used as a diagnostic signal for COVID-19; in [17] a study

of detection of coughs related to COVID-19 collected with phones

is presented using a cohort of 48 COVID-19 patients versus other

pathological coughs on which an ensemble of models are trained.
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In [14] speech recordings from hospital patients with COVID-19

are analyzed to categorize automatically the health state of pa-

tients. Our work contains an exploration of using human respira-

tory sounds as diagnostic markers for COVID-19 in crowdsourced,

uncontrolled data. Specifically, this paper describes our preliminary

findings over a subset of our dataset currently being crowdsourced

worldwide at www.covid-19-sounds.org. The dataset was collected

through an app (Android and Web) that asked volunteers for sam-

ples of their voice, coughs and breathing as well as their medical

history and symptoms. The app also asks if the user has tested

positive for COVID-19. To date, we have collected on the order of

10,000 samples from about 7000 unique users. While other efforts

exist that collect some similar data, they are often either limited in

scope (e.g., collect only coughs [2, 3]) or in scale (e.g., collect smaller

samples in a specific region or hospital). This is, to our knowledge,

the largest uncontrolled, crowdsourced data collection of COVID-19

related sounds worldwide. In addition, the mobile app gathers data

from single individuals up to every two days, allowing for potential

tracking of disease progression. This is also a unique feature of our

collected dataset. Section 3 contains a more detailed description of

the data. In this paper we analyze a subset of our data as described

in Section 3.3 and show some preliminary evidence that cough and

breathing sounds could contain diagnostic signals to discriminate

COVID-19 users from healthy ones; we further compare COVID-19

positive user coughs with healthy coughs, as well as those from

users with asthma. More precisely, the contributions of this paper

are:

• Description of COVID-19 sound collection framework through

apps, and the types of sounds harvested through crowdsourc-

ing.

• Illustration of the large-scale dataset being gathered. To date,

this is the largest being collected and among the most in-

clusive in terms of types of sounds. It contains sounds from

about 7000 unique users (more than 200 of whom reported a

recent positive test for COVID-19).

• We present initial findings around the discriminatory power

of coughs and breath sounds for COVID-19. We construct

three binary tasks, one aiming to distinguish COVID-19 pos-

itive users from healthy users; one aiming to distinguish

COVID-19 positive users who have a cough from healthy

users who have a cough; and one aiming to distinguish

COVID-19 positive users with a cough from users with

asthmawho report having a cough. The results show that the

performance remains above 80% Area Under Curve (AUC)

for all tasks. Specifically, we are able to classify correctly

healthy and COVID-19 sounds with an AUC of 80% (Task

1). When trying to distinguish a user who tested positive for

COVID-19 and has a cough from a healthy user with a cough

(Task 2), our classifier achieves an AUC of 82%, while if we

try to distinguish users who tested positive for COVID-19

and have a cough from users with asthma and a cough (Task

3) we achieve an AUC of 80%.

• We show how audio data augmentation can be used to im-

prove the recall performance of some of our tasks with less

data. We see a performance improvement of 5% and 8% for

Task 2 and Task 3 respectively.

• Discussion of results and their potential, and illustration of

a number of future directions for our analysis and for sound-

based diagnostics in the context of COVID-19, which could

open the door to COVID-19 pre-screening and progression

detection.

2 MOTIVATION AND RELATEDWORK

Researchers have long recognised the utility of sound as a possible

indicator of behavior and health. Purpose-built external microphone

recorders have been used to detect sound from the heart or the

lungs using stethoscopes, for example. These often require listening

and interpretation by highly skilled clinicians, and are recently and

rapidly being substituted by different technologies such as a variety

of imaging techniques (e.g., MRI, sonography), for which analysis

and interpretation is easier. However, recent trends in automated

audio interpretation and modeling has the potential to reverse

this trend and offer sound as the cheap and easily distributable

alternative.

More recently the microphone on commodity devices such as

smartphones and wearables have been exploited for sound analysis.

In [8] the audio from the microphone is used to understand the user

context and this information is aggregated to make up a view of the

ambience of places around a city. In Emotionsense [27], the phone

microphone is used as a sensor for detecting users’ emotion in-the-

wild, through Gaussian mixture models. In [22] authors analyze

sounds emitted while the user is sleeping, to identify sleep apnea

episodes. Similar works have also used sound to detect asthma and

wheezing [18, 23].

Machine learning methods have been devised to recognize and

diagnose respiratory diseases from sounds [24] and more specif-

ically coughs: [4] uses convolutional neural networks (CNNs) to

detect cough within ambient audio, and diagnose three potential

illnesses (bronchitis, bronchiolitis and pertussis) based on their

unique audio characteristics.

Clinical work has concentrated on using voice analysis for spe-

cific diseases: for example, in Parkinson’s disease, microphone and

laryngograph equipment have been used to detect the softness

of speech resulting from lack of coordination over the vocal mus-

cles [6, 12]. Voice features have also been used to diagnose bipolar

disorder [13]; and to correlate tone, pitch, rhythm, rate, and volume

with signs of invisible conditions like post traumatic stress disor-

der [5], traumatic brain injury and depression. Voice frequency has

been linked to coronary artery disease (resulting from the hardening

of the arteries which may affect voice production) [19]. Compa-

nies such as Israeli-based Beyond Verbal and the Mayo Clinic have

indicated in press releases that they are piloting these approaches.

Recently, with the advent of COVID-19, researchers have started

to explore if respiratory sounds could be diagnostic [10]. In [16] dig-

ital stethoscope data from lung auscultation is used as a diagnostic

signal for COVID-19. In [17] a study of detection of coughs related

to COVID-19 is presented using a cohort of 48 COVID-19 tested

patients versus other pathological coughs, on which an ensemble

of model are trained. In [14] speech recordings from COVID-19

patients are analyzed to categorize automatically the health state of

patients from four aspects, namely severity of illness, sleep quality,
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(a) Cough Screen (b) Symptom Screen

Figure 1: App Screens.

fatigue, and anxiety. Quatieri et al. [26] showed that changes in

vocal patterns could be a potential biomarker for COVID-19.

Our work differs from these works, as we use an entirely crowd-

sourced dataset, for which we must trust that the ground truth is

what the users state (in terms of symptoms and COVID-19 testing

status); we must further overcome the challenges of data coming

from different phones and microphones, possibly in very different

environments. The closest to our work is [17], from which our ap-

proach differs in two significant ways. Firstly, their data is collected

in a controlled setting. In comparison our data is crowdsourced,

making data analysis more challenging. Secondly, they used an end-

to-end deep learning model on their dataset consisting of around

100 samples; deep learning models often overfit on such very small

datasets, so we chose a different strategy. We use simple machine

learning models such as SVM with various features (handcrafted

and obtained through transfer learning) and data augmentation

to overcome such issues. Other crowdsourced approaches of this

kind are starting to emerge: in [29] a web form to gather sound

data is presented, which collected about 570 samples but does not

report any COVID-19 detection analysis. Our app collected samples

from more than 7000 unique users with more than 200 positive

for COVID-19, and allows users to go back to the app after a few

days to report progression and give another sample. We report our

preliminary findings which suggest that sounds could be used to

inform automatic COVID-19 screening.

3 DATA COLLECTION

This section describes our data collection framework and some

properties of the gathered data. We further describe in detail the

subset of the data used for the analysis in this paper. We note that

the data collection and study have been approved by the Ethics

Committee of the Department of Computer Science and Technology

at the University of Cambridge.

3.1 Our data collection apps

Our crowdsourced data gathering framework is comprised of a

web-based app and an Android app 1 . The features of these apps

are mostly similar: the user is asked to input their age and gender

as well as a brief medical history and whether they are in hospital.

Users then input their symptoms (if any) and record respiratory

sounds: they are asked to cough three times, to breathe deeply

through their mouth three to five times and to read a short sentence

appearing on the screen three times. Finally, users are asked if they

have been tested for COVID-19, and a location sample is gathered

with permission. Figure 1 illustrates some sound- and symptom-

collection screens of the Android app. In addition, the Android (and

iOS) app prompts users to input further sounds and symptoms every

two days, providing a unique opportunity to study the progression

of user health based on sounds. The data flows encrypted to our

servers where it is stored securely; data is transmitted from the

phones when the user is connected to WiFi and stored locally until

then. If a successful transmission happens the data is removed

from the device. We do not collect user email addresses or explicit

personal identifiers. The apps display a unique ID at the end of

the survey to enable users to contact us and ask for their data

deletion. The app does not provide medical advice to users. To

foster reproducibility, we will release the code of our apps as open

source linked from our webpage www.covid-19-sounds.org. Given

the data is sensitive (i.e., containing voice) we are setting up sharing

agreements for the data.

3.2 Crowdsourced dataset

Helped by a large media campaign orchestrated by the University,

we were able to crowdsource data from a large number of users.

In particular, as of 22 May 2020, our dataset is composed of 4352

unique users collected from the web app and 2261 unique users

collected from the Android app, comprising 4352 and 5634 sam-

ples respectively. Of these, 235 declared having tested positive for

COVID-19: 64 in the web form and 171 in the Android app. Of

the Android users, 691 users contributed more than one sample,

i.e., they returned to the app after two days and reported their

symptoms and sounds again.

(a) Per country (b) Age

Figure 2: User Distribution: (a) Top 10 countries, and (b) Age.

pnts="Prefer not to Say", None=Country not available.

Data distribution statistics are described below. Figure 2 (a) illus-

trates the country (recorded from location sample) distribution. We

note that many users opted not to record their location. The gender

breakdown is 4525 Male, 2056 Female, 26 Prefer not to say, and six

1an iOS app is also now available at www.covid-19-sounds.org
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(a) Distribution of symptoms amongst all users.

(b) Distribution of symptoms in COVID-19 positive tested users.

Figure 3: The most frequent 15 symptom combinations ob-

tained from Android.

Others. Of all completed surveys, 6088 reported no symptoms and

3898 ticked at least one. Figure 2 (b) shows the age distribution,

which is skewed towards middle age.

Figure 3 (a) shows the most frequent symptom distributions for

all the Android users; we do not know which users have or have

had COVID-19 recently, but we know that only a small fraction

of these have tested positive (see statistics above). In this group,

the most common single symptom reported is a dry cough, while

the most common combination of symptoms is a cough and sore

throat. Figure 3 (b) shows the most frequent symptoms of users

declaring a positive COVID test. Interestingly, the most common

single symptoms are wet and dry cough, and the most common

combination is lack of sense of smell and chest tightness. This is

aligned with the COVID-19 symptom tracker data [21]. The fact

that cough is one of the most reported symptoms for COVID-19,

but is also a general symptom of so many other diseases, provides

further motivation for using sounds as a general predictor.

3.3 Dataset used for this analysis

Guided primarily by the imbalance of COVID-19 tested users in

the dataset, for this analysis we have focused on a curated set

of the collected data (until 22 May, 2020). We also restricted our

work to use only coughs and breathing (and not the voice samples).

A sample is an instance of one audio recording. We report here

the number of samples used in our analysis after filtering (silent

and noisy samples). In particular, we have extracted and manually

checked all samples of users who said they had tested positive for

COVID-19 (in the last 14 days or before that) resulting in 141 cough

and breathing samples. 54 of these samples were from users who

reported dry or wet cough.

As a control group, our analysis uses three sets of users. The first

set consists of users from countries where the virus was not preva-

lent at the time of data collection (up to around 2000 cases): we treat

these as non-COVID users. We selected Albania, Bulgaria, Cyprus,

Greece, Jordan, Lebanon, Sri Lanka, Tunisia, and Vietnam. Specif-

ically, we define non-COVID users as those with a clean medical

history, who had never smoked, had not tested positive for COVID-

19, and did not report any symptoms. These users contributed 298

samples. The second set non-COVID with cough consists of users

who meet the same criteria as the non-COVID users, but declared

a cough as symptom; these provided 32 samples. Finally, asthma

with cough are the users who have asthma, had not tested positive

for COVID-19, and had a cough; these gave us 20 samples.

We intend to release all our data openly; however, due to the

sensitive nature (e.g. voice) our institution has advised us to release

it with one-to-one legal agreements with other entities for research

purposes. Our web page will include information about how to

access the data.

4 METHODS

Standard data processing and modeling practises from the audio

and sound processing literature targeting medical applications were

followed [25]. Based on the moderate size of the dataset selected,

and the importance of explicability given the public health impli-

cations of our work, feature-based machine learning and shallow

classifiers were employed. In this section, we describe the extracted

features and the methodology we followed to train robust classi-

fication models, taking into account specific idiosyncrasies of our

data (e.g., longitudinal mobile users and cross-validation). We an-

alyzed two different types of features: handcrafted features, and

features obtained though transfer learning. We tested classifiers

such as Logistic Regression (LR), Gradient Boosting Trees and Sup-

port Vector Machines (SVMs); results can be found in the results

section.We evaluated an SVM classifier with a Radial Basis Function

(RBF) kernel. We considered different values of the following hyper-

parameters: regularization parameter C and kernel coefficient 𝛾 .
Figure 4 illustrates the data processing pipelines.
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Figure 4: Description of our machine learning pipeline, describing sounds input (coughs and breathing), the extracted feature

vector, and our training and testing split of the users that are used to train classification models.

4.1 Feature extraction

Handcrafted Features. The raw sound waveform recorded by the

apps is resampled to 22kHz, a standard value for audio tasks. We

used librosa [20] as our audio processing library. From the resam-

pled audio various handcrafted features are extracted at the frame

and segment level, covering frequency-based, structural, statistical

and temporal attributes. A segment is the whole instance of one au-

dio recording, while a frame is a chunk (subset) of the whole audio

data contained in a segment. A complete list is provided below:

• Duration: the total duration of the recording after trimming

leading and trailing silence.

• Onset: the number of pitch onsets (pseudo syllables) is com-

puted from the signals, by identifying peaks from an onset

strength envelope, which is obtained by summing each posi-

tive first-order difference across each Mel band [11].

• Tempo: a global acoustic tempo feature is estimated for each

recording, which is commonly used in music information

retrieval [11]. It measures the rate of beats which occur at

regular temporal intervals. In our context, it is used for its

peak detection capabilities.

• Period: the main frequency of the envelope of the signal. We

calculate the FFT on the envelope and identify the frequency

with the highest amplitude from the 4th mode upwards (as

the envelope has non-zero mean).

• RMS Energy: the root-mean-square of the magnitude of a

short-time Fourier transform which provides the power of

the signal.

• Spectral Centroid: the mean (centroid) extracted per frame

of the magnitude spectrogram.

• Roll-off Frequency: the center frequency for a spectro-

gram bin so that at least 85% of the energy of the spectrum

in this frame is contained in this bin and the bins below.

• Zero-crossing: the rate of sign-changes of the signal.

• MFCC: Mel-Frequency Cepstral Coefficients obtained from

the short-term power spectrum, based on a linear cosine

transform of the log power spectrum on a nonlinear Mel

scale. MFCCs are amongst the most common features in

audio processing [9]. We use the first 13 components.

• Δ-MFCC: the temporal differential (delta) of the MFCC [1].

• Δ2-MFCC: the differential of the delta of the MFCC (accel-

eration coefficients) [1].

For the features that generate time series (RMS Energy, Spectral

Centroid, Roll-off Frequency, and all variants of MFCCs), we extract

several statistical features in order to capture the distributions

beyond the mean. A complete list is: mean, median, root-mean-

square,maximum, minimum, 1st and 3rd quartile, interquartile range,

standard deviation, skewness, and kurtosis. In total, there are 477

handcrafted features including the first four segment-level features,

four frame-level features represented by their statistics, and three

variants ofMFCCswith each component represented by its statistics

(4 + 4 × 11 + 3 × 13 × 11 = 477).

Features from Transfer Learning. In addition to handcrafted

features, we employ VGGish to extract audio features automat-

ically [15]. VGGish is a convolutional neural network that was

proposed for audio classification based on raw audio input; the

VGGish model was trained using a large-scale YouTube dataset and

the learned model parameters were released publicly. We employ it

as a feature extractor to transform the raw audio waveforms into

embeddings (features), which are then passed to train a shallow

classifier. The VGGish pre-trained model first divides data samples

into 0.96-sec non-overlapping sub-samples, and for each 0.96 sec-

ond, it returns a 128-dimensional feature vector. The sampling rate

is 16 KHz. We take the mean and standard deviation across the

entire segment as the final features, with dimension 256 (128 × 2).

Since VGGish is based only on a spectrogram input, some important

characteristics from the temporal domain might get missed in the

feature space, which motivates the additional use of a combina-

tion of VGGish with handcrafted features. Section 5 shows that
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this combination helps in achieving better AUC compared to using

solely VGGish or handcrafted features.

We obtain a 477-dimensional handcrafted feature vector, a 256-

dimensional VGGish-based feature vector, and several combined

feature vectors for each modality (cough, breathing) which are up

to 733 in dimensions, in total. Each combined feature vector is the

concatenation of a subset from the handcraft feature sets and the

VGGish-based features. These feature vectors are further reduced

by Principal Components Analysis (PCA) retaining a portion of the

initial explained variance. More details about the pre-processing

are provided in Section 5.

5 EVALUATION

We now detail our evaluation of the classification of audio samples

as COVID-19 or healthy using features described in Section 4. Given

the large class imbalance, a subsample of the initially collected

dataset (described in Section 3.3) was used. We first describe how

data from different modalities weremerged and how the dataset was

partitioned for the experiments. Findings and results are discussed

in the later part of the section.

5.1 Experimental setup

Classification tasks. Based on the data collection (Section 3) we

focus on three clinically meaningful binary classification tasks:

• Task 1: Distinguish users who have declared they tested pos-

itive for COVID-19 (COVID-positive), from users who have

not declared a positive test for COVID-19, have a clean med-

ical history, have never smoked, have no symptoms and, as

described in Section 3, were in countries where COVID-19

was not prevalent at the time (non-COVID). While we can-

not guarantee they were not infected, the likelihood is very

small.

• Task 2: Distinguish users who have declared they tested

positive for COVID-19 and have declared a cough as a symp-

tom (a frequent symptom in those with COVID, as reported

in Figure 3), (COVID-positive with cough) from users who

have declared not to have tested positive for COVID-19, have a

clean medical history, never smoked, were in countries where

at the time COVID-19 was not prevalent and have a cough

as a symptom (non-COVID with cough).

• Task 3: Distinguish users who have declared they tested

positive for COVID-19 and have declared a cough as a symp-

tom (COVID-positive with cough), from users who have not

declared to have tested positive for COVID-19, are from coun-

tries where at the time COVID-19 was not prevalent, have

reported asthma in their medical history and have a cough

as a symptom (non-COVID with cough).

Data exploration. As a first step after feature extraction, we

examine the differences between the distributions of the features

obtained from cough and breathing broken down by respective class.

Given the high dimensionality of the features, we cannot present all

distributions, therefore we focus only on themean statistical feature

of each feature family (e.g., Centroid is Centroid mean here). The

box plots in Figure 5 show that coughs and breaths from COVID-

positive users are longer in total duration, have more onsets, higher

periods, and lower RMS, while their MFCC features [1st component

and deltas] have fewer outliers. Across both tasks, the samples

from COVID-positive users concentrate more towards the mean of

the distributions, whereas the general (healthy) population shows

greater span (interquartile range), with the hypothesis being that

a (possibly forced) healthy cough and breathing are very diverse.

This may also suggest that coughs and breaths are useful sounds

for classifying users as COVID or non-COVID.

Feature ablation studies. In order to identify which audio

modality (cough or breathing) contributes more to the classification

performance, we repeat our experiments with three different audio

inputs: only cough, only breathing, and combined. To account for

the increasing dimensionality of the combined representation and

to make a fair comparison, we perform experiments to find the

best cut-off value for PCA (see results in next section). The values

of explained variance range between [70%, 80%, 90% and 95%]. In

practice, this means that with lower explained variance the clas-

sifiers will use fewer input dimensions and vice versa. Intuitively,

a combined representation might need a more compressed repre-

sentation than a representation using only coughs or breaths, to

prevent overfitting.

User-based cross-validation. We create training and test sets

from disjoint user splits, making sure that samples from the same

user do not appear in both splits. Note that this does not result

in perfectly balanced class splits; however, we downsampled the

majority (non-COVID) class when needed. The test set is kept

balanced.

Even then, it is not easy to guarantee that a split selects a repre-

sentative test-set, so we performed a 10-fold-like cross validation

using 10 different random seeds to pick disjoint users in the outer

loop (80%/20% split), and a hyper-parameter search as inner loop

to find the optimal parameters (using the 80% train-set in a 5-fold

cross validation). Essentially, this setup resembles a nested cross-

validation [7]. We conduct extensive experiments by testing 5400

models (3 tasks × 3 modalities × 10 user splits × 4 dimensionality

reduction cut-offs × 3 feature types × 5 hyper-parameter cross-

validation runs). We selected several standard evaluation metrics

such as the Receiver Operating Characteristic - Area Under Curve

(ROC-AUC), Precision, and Recall. We report the average perfor-

mance of the outer folds (10 user-splits) and the standard deviation.

In the following section we report the performance of our three

tasks.

Sensitivity to demographics. Including age and sex as one-

hot-encoded features in our models (e.g. age group: 40-49 years old)

did not improve or worsen the results substantially (< ± 2 AUC).

5.2 Distinguishing COVID-19 users from
healthy users

Table 1 reports the results of the classification for the three tasks

described above. For each task, we report the best results, which

might have been obtained using either a single modality (cough or

breathing sounds) or a combination of both modalities. The first

row reports classification results for Task 1: the binary classification

task of discriminating users who declare having tested positive for

COVID-19 (COVID-positive), from users who answered no to that

question (non-COVID).

Health Day Paper  KDD ‘20, August 23–27, 2020, Virtual Event, USA

3479



Figure 5: Box plots of the mean features of cough and breathing. CC: COVID Cough, NC: Non-COVID Cough, CB: COVID

Breathing, NB: Non-COVID Breathing.

Task Modality Samples (users)* Feature Type Mean ± std

ROC-AUC Precision Recall

1. COVID-positive /

non-COVID
Cough+Breath 141 (62) / 298 (220)

1 0.71 (0.08) 0.69 (0.09) 0.66 (0.14)

2 0.78 (0.07) 0.72(0.08) 0.67(0.11)

3(A) 0.80(0.07) 0.72(0.06) 0.69(0.11)

2. COVID-positive with cough

/ non-COVID with cough
Cough 54 (23) / 32 (29)

1 0.65(0.22) 0.62(0.20) 0.69(0.14)

2 0.82(0.16) 0.79(0.16) 0.71 (0.23)

3(A) 0.82(0.18) 0.80(0.16) 0.72(0.23)

3. COVID-positive with cough

/ non-COVID asthma cough
Breath 54 (23) / 20 (18)

1 0.76(0.30) 0.64(0.29) 0.72(0.31)

2 0.72(0.16) 0.77(0.22) 0.47(0.15)

3(B) 0.80(0.14) 0.69(0.20) 0.69(0.26)

Table 1: Classification results for the three tasks. *The number of samples before splitting to train/test and downsampling.

Logistic Regression results are reported for the first task, while SVMs for the latter two tasks. We report the best modality

and representation size for PCA (detailed results for every cutoff are provided in Figure 6) for each task. Feature Type 1 =

Handcrafted with PCA = 0.8 for three tasks, Type 2 = VGGish with PCA = 0.95 for Task 1 and 3, 0.9 for Task2, Type 3 =

Handcrafted + VGGish with PCA = 0.95 for Task 1, 0.9 for Task 2, and 0.7 for Task 3. For Type 3, (A) denotes that we use

VGGish-based feature plus duration, tempo, onset, and period, (B) for all features except Δ-MFCCs and Δ2-MFCCs, and (C) for

all features.

The metrics show that there seem to be some discriminatory sig-

nals in the data indicating that user coughs combined with breath-

ing could be a good predictor when screening for COVID-19. In

particular, the AUC for this task is at 80% while precision and recall

are around 70%. Compared to the other tasks (Task 2 and 3), Task

1 has the lowest standard deviations across the user-splits, mostly

due to the larger data size. We applied a very simple classifier (Lo-

gistic Regression) and that the data is perhaps too limited in size

to obviate the noise and diversity introduced by our crowdsourced

data gathering (e.g., differences in microphones, surrounding noises,

ways of inputting the sounds). Nevertheless these results give us

confidence in the power of this signal. We also observed that hand-

crafted features when combined with features learnt from VGGish

provide better results than handcrafted or transfer learning features

alone, which shows the promise of using transfer learning in our

analysis.

5.3 Distinguishing COVID-19 coughs from
other coughs

The second row of Table 1 describes the binary classification of

users who reported testing positive for COVID-19 and also declared

a cough in the symptom questionnaire, and a similar number of

users who said they did not test positive for COVID-19 but declared

a cough (Task 2). The best result shows an AUC of 82%. Precision

for this task is at 80%, showing that cough sounds are able to distin-

guish COVID-19 positive users quite well. Recall is slightly lower

(72%), meaning that this model casts a good but rather special-

ized net: it does not detect every COVID-19 cough, but many of

them. Nevertheless, the size of the data, as well as the relatively

high standard deviations compared to Task 1, renders this result

preliminary.

We also compared COVID-19 users with a cough, described

above, to users who said they did not test positive for COVID-19 but
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reported asthma and declared a cough. The last row of Table 1 shows

an AUC of 80%. While the recall is acceptable, precision for this task

is also high, like for the other two tasks. It is interesting to see that

breathing sounds serve as more powerful signals to discriminate

users in this task. We have further evaluated the utility of data

augmentation for Task 2 and 3 to improve performance (Section

A.2).

6 DISCUSSION AND CONCLUSIONS

We have presented an ongoing effort to crowdsource respiratory

sounds and study how such data may aid COVID-19 diagnosis.

These results only scratch the surface of the potential of this type

of data; while our results are encouraging, they are not as solid as

would be necessary to constitute a standalone screening tool. We

have, for the moment, limited ourselves to the use of a subset of the

data collected, to manage the fact that the proportion of COVID-19

positive users is small. We also have no ground truth regarding

health status, and so took users from countries where COVID-19

was not prevalent at the time as likely to be truly healthy when

self-reporting as such (however, this limited our dataset further).

We are in the process of collecting more data and discussing how

this crowdsourced endeavor could be complemented by a controlled

one, where we deliberately collect samples only from users who

have had a positive or negative COVID test as ground truth. This

will allow analysis of a larger dataset, possibly with more advanced

machine learning (e.g., deep learning). We are extending our study

to voice sounds, which we have already collected. Vocal patterns,

alongside breathing and cough, could give useful additional features

for classification.

While we have shown a limited investigation of the difference

between cough sounds in COVID-19 and asthma, our dataset also

includes users with other respiratory pathologies, and we hope to

study this further to investigate how distinguishable COVID-19 is

in this respect.

The mobile app reminds users to provide samples every couple

of days: as a consequence we have a number of users for whom we

could study the progression of respiratory sounds in the context of

the disease. This is very relevant for COVID-19, and something we

have not yet investigated in the current work.

Finally, our current app does not offer medical advice and only

collects data; while we hope that the models developed from this

data will be useful in disease screening, we are aware of the chal-

lenges involved in giving medical advice to users and the debates

that this generally sparks [30].
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A SUPPLEMENTARY MATERIAL

A.1 The impact of modalities and dimensionality

Our overall results suggest that different modalities are useful for different tasks. Here we analyze the role of each individual modality

and the combination in more detail for the three tasks. Figure 6a shows that for Task 1, cough alone (at least for the simple features used)

performs reasonably well (AUC around 70%); however in combination with breathing sounds, it achieves the highest AUC and lowest

standard deviation for the task. The dimensionality size is not highly significant here, however, the combination seems to improve with

more features. For Task 2, in Figure 6b we observe a different trend where cough is more precise than breathing or their combination. This

finding manifests from the nature of the task itself as data pertains to the people who actually had a cough. This also highlights the fact that

cough can be an important biomarker to differentiate between COVID and non-COVID users. Although the combined feature set achieves

better AUC with lower dimensionality (PCA 0.8), the cough modality seems to improve by using more features. This is expected, due to the

different feature sizes. Lastly, Task 3 (Figure 6c) follows similar trends, with overfitting becoming more apparent in higher dimensions due to

smaller sample size. Here, the breathing modality outperforms the other modalities, and its performance is highest at PCA 0.7 suggesting

that breathing is an important biomarker to distinguish COVID sounds from asthma.

(a) COVID-positive / non-COVID (b) COVID-positive with cough / non-

COVID with cough

(c) COVID-positive with cough / non-

COVID with cough

Figure 6: The effect of combining different sound modalities (cough, breathing) and the size of the feature vector dimension

on overall performance (AUC ± std in shaded areas). We note that Tasks 2 and 3 (b,c) overfit more due to sample sizes.

A.2 Data augmentation

To counter the small amount of control data available for Tasks 2 and 3, we augmented the negative class (non-COVID) for these two tasks

using three standard audio augmentation methods [28]: amplifying the original signal (1.15 to 2 times, picked using a random number),

adding white noise (without excessively impacting signal to noise ratio), and changing pitch and speed (0.8 to 0.99 times). We made sure not

to distort the original signal significantly: we manually inspected and listened to the audio before and after performing data augmentation.

We applied each method twice to the original samples to obtain six times as many. Specifically, we increased the number of samples for

‘non-COVID with cough’ and ‘non-COVID asthma with cough’. Note that we used augmented samples only for training (the test set was

kept intact). The results are shown in Table 2. We observe that the performance for all the metrics improved. There is almost a 10% increase

in both the AUC (nearly 90%) and recall, with a slightly smaller standard deviation, compared to results in Table 1. A very high AUC shows

that audio sounds have high discriminatory power to distinguish COVID vs non-COVID and asthma patients. With the much improved

recall our model is also able to recognize almost all the COVID coughs. This is clinically important, since our aim is to identify COVID-19

positive cases; misclassifying some healthy users is acceptable as these can be identified in a second stage of testing.

Task Modality Samples (users)* Feature Type Mean ± std

ROC-AUC Precision Recall

2. COVID-positive with cough

/ non-COVID with cough
Cough 54 (23) / 32 × 6 (29)

1 0.58(0.22) 0.52(0.19) 0.85(0.30)

2 0.73(0.20) 0.57(0.16) 0.92(0.24)

3(C) 0.87(0.14) 0.70 (0.15) 0.90 (0.18)

3. COVID-positive with cough

/ non-COVID asthma with

cough

Breath 54 (23) / 20 × 6 (18)
1 0.77(0.18) 0.68(0.09) 0.90(0.16)

2 0.88(0.15) 0.63(0.22) 0.82(0.32)

3(B) 0.88(0.12) 0.61(0.22) 0.81(0.31)

Table 2: Classification results with data augmentation for Tasks 2 and 3. Task 2: PCA = 0.8 for Type 1 and 0.7 for Type 2 and 3;

Task 3: PCA = 0.95 for Type 1 and 0.9 for Type 2 and 3.
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